Site Loader
Rock Street, San Francisco

The substrate is then metabolize or broken down, resulting in a product, which can be utilized to energize cells. Once the product is released from the active site the enzyme returns to it’s original form. The main objective of this lab was to take the enzyme lactate and observe how well it acts as a catalyst to the substrates lactose and maltose while in varying environments. Lactate’s effectiveness was studied in an environment with differing temperatures, pHs, and while placed with a cofactor, an enzyme catalyst assistant.

The environment’s pH can range from 1-14, 7 being neutral, 7-1 being more and more acidic towards 1, and 8-14 being more and more basic towards 14. The product that was measuring to determine the enzyme’s performance as glucose, a monomer or small molecule, of the polymers, consisting of bound monomers, lactose and maltose. We hypothesized that lower temperatures would cause the enzyme to slow down and at higher temperatures it would unravel or go through denomination, causing it to cease activity.

Since lactate is formed in the small intestine and the body temperature (- 40 degrees C) is it’s optimal temperature and the normal pH of the small intestine is it’s optimal pH (pH=8) we also hypothesized that moving in either direction away from the norm would hinder the production of glucose. Thirdly, since lactate is specific the the substrate lactose (Lactose Intolerance and Health, Evidence Report/Technology Assessment Number 192) we hypothesized that lactose would have a higher metabolic rate than maltose.

Finally, since EDT is most commonly added cofactor to laboratory solutions to bind and remove metal ions from the solution in order to slow undesired enzymatic reactions (Unit 7: Enzymes lab) we assumed that the breakdown of lactose into glucose by lactate was a desirable reaction and that EDT would, not inhibit, but enhance the reaction. Methods Temperature experiment Microfilm tubes were labeled with 0, 40, 60, or 100. A plastic pipette was used to fill each tube up to the 0. 5 line with lactate solution. The volume of the lactate solution was mall. Each tube was place in a water bath or beaker and let to sit for 5 minutes.

An alternate plastic pipette was used and mild was added to the tube until the mixture of milk and lactate reached the 1. 0 line. After 10 minutes a glucose strip was placed into the tube for one second and then removed to sit on the bench top for 30 seconds. At the end of 1 minute the coloration on the strip was compared to the chart provided and the amount of glucose was determined in MGM/ODL. (Unit 7:Enzymes lab) pH experiment Three microfilm tubes were labeled acidic, neutral, and basic. A plastic pipette was used to fill the tube up to the 0. 5 line with milk.

Next, a clean plastic pipette was used to add 1 drop of MM HCI to the acidic tube, and the solution was tested for pH with pH paper to verify that the solution had a pH of 2. Next, a clean plastic pipette was used and 1 drop of distilled water was added to the neutral be. Then, it was tested with pH paper to verify that the solution had a pH of 7. Following that, a clean plastic pipette was used to add 1 drop of concentrated Noah too the basic tube, and was then tested with pH paper to verify that the pH was 12. Once the pH had been attained for each tube, lactate was added to bring the solution up to the 1. Line of the tube. All tubes were then placed in a 40 degrees C water bath and incubated for 10 minutes. After 10 minutes, a glucose strip was placed in each tube for one second and removed to compare he coloration of the strip to the chart provided and the amount of glucose was determined in MGM/ODL. (Unit 7: Enzymes lab) Specificity experiment One microfilm tube was labeled “Lactose” and another tube was labeled “Maltose”. Then, a clean plastic pipette was used to add milk up to the 0. 5 line of the lactose and also a clean pipette was used to do the same in the maltose tube.

Next, a clean plastic pipette was used to ad lactate to each tube until the level of mixture in each tube came up to the 1. 0 line. Both tubes were then placed in a 40 degrees C bath and incubated for 10 minutes. After 10 minutes a glucose strip was placed in each tube for one second, removed, and allowed to sit on the bench top for one minute. At the end of one minute the strip coloration was compared to the chart provided and the amount of glucose was determined in MGM/ODL. (Unit 7: Enzymes lab) Cofactor experiment One microfilm tube was labeled “Control” and another one “EDT”. . 5 M EDT was added to the EDT tube until the solution reached the line between 1. 0 and 1. 5 lines on the tube. Distilled water was added to the control tube until the water reached the line between 1. 0 and 1. 5 on the tube. Then, three drops of milk were added to each tube and allowed to sit for 1 minute. Next, three drops of lactate were added to each tube and placed in the 40 degrees C water bath. They were left there for 10 minutes. After 10 minutes, a glucose strip was placed in each tube for one second, removed, and allowed to sit on the bench top for one minute.

At the end of one minute the strip coloration was compared to the chart provided and the amount of glucose was determined in MGM/ODL. (Unit 7: Enzymes lab) Results I Glucose 1 1100 10 c | 250 I (MGM/ODL) Control-Glucose (MGM/ODL) DIETED-Glucose (MGM/ODL) I Mean= 1250. 194 1 1 sample size: 198 198 1 It: 50. 1 193 p < 0. 0001 reject the null hypothesis Discussion Although lactase is a very effective catalyst to lactose metabolism, we see that it is very sensitive. As we expose it to change from it's normal environment temperature and pH it became almost immobilized rapidly, as it's environment went farther from it's optimal temperature and PH.

In fact, we also discovered that EDT plays a significant role in lowering the activation level of lactose. It is now possible to see from our results that lactate is an enzyme that functions ere well at optimal levels whether in the body or outside the small intestine. The finding that lactate is specific to the substrate lactose shows us that lactose intolerance is very widespread, affecting millions of individual, a is probably due to the lack of the enzyme lactate. Lactose intolerance is a condition that prevents an individual from metabolize lactose. Unit 7: Enzymes lab). However, due to our findings in this lab that the environment is very influential on lactate, there may be a basis to say that lactose intolerance may be induced y a imbalance in the biological system. Studies have shown that the biological system is also affected by other enzymes too. Food is a very active vehicle that many people associate as being a catalyst for the production of vital energy and some are associating it with healthy enzymes. However, different forms of food are seen to affect us in varying ways.

Some produce an instant feel of increased energy and others seem to put us into a slumber. These varying results is not a figment of imagination. (Dry. Paul Kickoff, The Institute of Clinical Chemistry in Lausanne, Switzerland) For instance, raw food has been found to be more fitting to our biological system than cooked foods because the high temperatures of cooked food cause the enzymes in the food to be denatured, which in turn forces the body to produce the enzymes need to break down the food into energy.

On the other hand, raw food or slightly cooked food preserves the enzymes used to catalyst the molecular breakdown without the body needing to do the enzymatic work. (Biological Adaptations:Diet is Species Specific) If we want to know how the biological system of an individual responds to raw ND cooked foods I propose that an experiment is done and that we do a Temperature experiment, similar to the experiment in this lab, on the glucose levels of subjects after eating raw foods and cooked foods.

Post Author: admin

Leave a Reply

Your email address will not be published. Required fields are marked *